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Abstract

The thermal shock stress in a mercury target vessel was analyzed. The target receives the incident proton beam at an

energy of 1 MW with a pulse duration of 1 ls. A negative pressure of 61 MPa was generated following the dispersion of

the compression field at 52 MPa which was generated by the proton beam injection. It is expected that cavitation may

be caused by the negative pressure. In order to evaluate the cavitation behavior and the following material damage

mechanism, a simulation study was carried out using the equation of motion based on bubble dynamics for a single

bubble, and fundamental parameter analysis was carried out. It is found that a bubble has a volume expansion of more

than 1000 times with a change of the pressure at the window of the target vessel. Consequently wave propagation will be

affected. Theoretical consideration was given to the wave motion of propagation in a bubbly liquid. The equation of

state in a bubbly liquid can be approximated by polynomials. The diameter of a bubble and the bubble volume fraction

inherent in mercury can be estimated if the critical pressure, the sound velocity, and resonance frequency are measured

by static and dynamic experiments.

� 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

The Japan Atomic Energy Research Institute

(JAERI) and the High Energy Accelerator Research

Organization (KEK) have cooperatively promoted a

plan for constructing a neutron scattering experiment

facility of MW scale using a high intensity proton ac-

celerator. Liquid mercury is to be used for the target as

a spallation neutron source. The structure of this target

is shown in Fig. 1. The power of the proton beam is

1 MW:3 GeV and 333 lA. The pulse duration of the
beam is 1 ls, and a repetition rate 25 Hz. The proton
beam passes through the window of the target vessel and

interacts with a mercury target. The high energy density

deposited in mercury generates heat. Consequently a

pressure wave occurs inside the target. This pressure

wave has a possibility of damaging the internal wall of

the target window. Fig. 2 shows an example of the an-

alytical results of pressure change in mercury generated

by the pressure wave [1]. In this analysis, mercury is

assumed to be an elastic body. The mercury near the

window of the target vessel, a negative pressure of

3.7 MPa arises after proton beam incidence. The nega-

tive pressure means that mercury is not compressed but

expanded. This is caused by the dynamic interaction of

the target vessel and mercury. It is expected that cavi-

tation may be caused by the negative pressure. In order

to evaluate the cavitation behavior and the following

material damage mechanism, a simulation study was

carried out using the equation of motion based on

bubble dynamics for a single bubble, and fundamental

parameter analysis was carried out.

The experiment on the negative pressure in mercury

was done by Briggs [2]. They treated mercury by means

of vacuuming, torching and heating in a furnace at

various temperatures in order to degas mercury. Then
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centrifugal force was applied to the mercury in a Pyrex

glass tube. The negative pressure threshold for cavita-

tion depended very much on the preparation of mercury;

it was 0.7 MPa after vacuum processing, 4.6 MPa after

torching process and 4.7–42.5 MPa after heating in a

furnace, respectively. The negative pressure threshold

increased with increasing furnace temperature.

In the target design, the negative pressure reaches the

maximum of about 60 MPa at a time of 60 ls in the area
6 cm away from the window, noted by the point B. The

occurrence of a negative pressure in mercury has sug-

gested the possibility that cavitation will occur. As a

result, the propagation characteristics of the pressure

wave may change and the vessel material in contact with

mercury may receive damage.

In this paper, the behavior of the pressure wave

under the condition of gas bubbles existence, which

spreads in mercury, is analyzed. The dynamic equation

of motion for the case that a gas bubble exists in mer-

cury is derived. Then, this equation is extended into

mercury with a large number of gas bubbles. Further-

more, the result of the propagating pressure wave in

mercury is considered. A design technique to estimate

the size of bubbles and the volume fraction inherent in

mercury is proposed finally.

2. Dynamics of single bubble

In order to predict the dynamic behavior of a single

bubble, a mathematical model based on the dynamics of

a gas bubble is considered [3]. This dynamics explains

the motion of a gas bubble in response to the changes of

the pressure in the liquid containing the gas bubble. The

existence of the bubble, which is presumably caused by

cavitation, is assumed.

2.1. Static equilibrium equation

Consider the case that a gas bubble with a radius of R
exists in the liquid with a static pressure of P0. Static
balance of the pressure is expressed by Eq. (1). As shown

in Fig. 3, the liquid pressure PBðr > RÞ near the bubble
balances the pressure in the bubble Pi and the pressure Pr

corresponding to the surface tension at the bubble in-

terface.

PB ¼ Pi � Pr; Pi ¼ Pg þ Pv; ð1Þ

where Pv is the vapor pressure and Pg is the gas pressure
in the bubble. P is calculated from the state of an initial

bubble ðR ¼ R0Þ expressed by Eq. (2).

Pg ¼ P0

�
þ 2r

R0
� Pv

�
R0
R

� �3c
; ð2Þ

where c is the specific heat ratio, which is 1.402 for air.
Substituting Eq. (2) into Eq. (1) gives Eq. (3).

PB ¼ P0

�
þ 2r

R0
� Pv

�
R0
R

� �3c
þ Pv �

2r
R

: ð3Þ

Fig. 3. Pressure balance of a gas bubble which exists in liquid.

-80

-60

-40

-20

0

20

40

0 200 400 600 800 1000

45.8 MPa (point A)
52.1 MPa (point B)

-61.2 MPa (point B)

-3.7MPa(point A)

Proton
beam

6cm

A B

Fig. 2. Analytical pressure response at top window.

Fig. 1. Schematic drawing of the structure of mercury target

vessel.
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Fig. 4 shows the relation of the pressure in mercury

to the radius of a bubble at the initial size of R0. The
static pressure in the liquid mercury is assumed to be

atmospheric pressure (P0 ¼ 0:1 MPa). The values of the
physical properties in mercury used for calculations are

shown in Table 1. If the pressure in mercury is reduced,

the volume of the bubble expands. If the bubble is

shrunk to its critical point it becomes statically unstable.

An inertia force will exist below the critical point, but it

will not happen in the quasi-static state. This critical

point is the generating condition for cavitation. The

critical radius Rcr and the critical pressure Pcr of liquid at
the critical point can be obtained by setting the partial

differential coefficient of Eq. (3) to zero. There is a ten-

dency for Pcr to become low as the diameter of bubble

becomes small, which means that cavitation does not

generate easily. As mentioned in Briggs� experiment [2],
careful degassing of mercury showed large negative

pressure thresholds for cavitation. It is thought that this

degassing process removed large size bubbles in mer-

cury.

Fig. 5 shows the relation between the critical pressure

and the initial radius of bubble. For mercury, the critical

pressure decreases with increasing bubble radius up to

100 lm. Above 100 lm the critical pressure decreases

abruptly, especially, when at the time bubble radius

becomes 500 lm. In water, the critical pressure falls

abruptly at a bubble radius of about 10 lm. There-
fore, in static equilibrium conditions, critical (negative)

pressure of a bubble is smaller at large initial bubble

radii.

2.2. The basic equation of single bubble motion about

expansion and contraction

Regarding the derivation of the equation of motion

for a single bubble, reports by Fujikawa and Akamatsu

[4] and Matsumoto and coworkers [5] consider the

substance movement by evaporation and condensation

on a bubble boundary. In this research, however, in

order to use of a general-purpose computer code, the

method of Prosperetti et al. [6] is applied. This method

solves three equations simultaneously that consists of

Eq. (4), which is the Keller�s equation with the consid-
eration of compressibility in the liquid, the Eqs. (5) and

(6), which are the formula of pressure and temperature

with consideration to the mass conservation and the

energy conservation rules of the gas in the bubble, re-

spectively.

The momentum equation is given by

1

 
�

_RR
c

!
R€RRþ 3

2
1

 
�

_RR
3c

!
_RR2

¼ 1

qL
1

 
þ

_RR
c

!
PBðtÞ
�

� P0 � Ps t
�

þR
c

��
þ R

qLc
dPBðtÞ
dt

PiðtÞ ¼ PBðR; tÞ þ 2r=Rþ 4lL _RR=R:
ð4Þ

The force balance equation is given by

dPi
dt

¼ 3

R
ðc
�

� 1ÞK oT
or

����
R

� cPi _RR
�
: ð5Þ

Fig. 4. Relation of pressure to initial bubble radius.

Fig. 5. Critical pressure to the initial bubble radius.

Table 1

Material properties

Items Water Mercury Air

Density, q (kg/m3) 996.6 13 528 1.18

Bulk modulus, Ks (GPa) 2.16 25.5 –

Surface tension, r (Pa) 0.0717 0.47 –

Vapor pressure, Pv (Pa) 3530 0.28 –

Shear viscosity, l (mPa s) 0.854 1.52 –

Thermal conductivity, K
(W/mK�1)

0.61 8.52 0.026

Specific heat, cp
(kJ/kgK�1)

4.179 0.139 1.01
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The energy equation is given by

c
c � 1

Pi
T

oT
ot

�
þ u

oT
or

�
� dPi
dt

¼ r � ðKrT Þ; ð6Þ

where _RR is the time differential of bubble radius R, c the
sound velocity in a liquid, qL the density, lL the coeffi-
cient of viscosity, r the surface tension, PiðtÞ the inner
pressure of bubble, P0 the static pressure in liquid, PsðtÞ
the pressure oscillation near the bubble, PBðtÞ the pres-
sure of liquid at the bubble perimeter, T the temperature
in a bubble, u the gas flow velocity in a bubble, c the
ratio of specific heat, and K the thermal conductivity of

the gas in the bubble.

2.3. Resonance frequency of bubble

Prosperetti et al. consider the case of small-amplitude

oscillations of a bubble for the linearization. Neglecting

the compressibility term of Eq. (4), which means Ray-

leigh–Plesset equation, a resonant frequency x0 of a

single bubble can be derived by Eq. (7).

x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

qLR
2
0

Re½U	 � 2r
R0P0

� �s
; ð7Þ

where qL is the density of a liquid, and Re½/	 the real
part of a complex number that is given from the energy

conservation rule. Fig. 6 shows the relation between the

radius of an initial bubble and the resonance frequency

of bubble in mercury. The approximate solution, for the

case omitting the surface tension of the mercury, is also

shown in the figure. Above a 10 lm radius of the bubble,

the exact solution is well matched with the approximate

solution. However, the difference of resonance frequency

becomes large if the surface tension of the mercury is

taken into consideration below 10 lm. As shown in Fig.
2, the frequency of pressure change in mercury near the

target vessel tip is nearly 9 kHz. The initial bubble radius

equivalent to this frequency is 90 lm.

2.4. Dynamics of single bubble

The simulation of the dynamic motion of a single

bubble was performed. The method of numerical solu-

tion was the Rational-Runge–Kutta [7] for the Eqs. (4)–

(6). The frequency response characteristic of a single

bubble has been reported [1]. The pressure change Ps of
the liquid surrounding the bubble equivalent to the

pressure history at the tip of the target window, as

shown in Fig. 2, is considered.

The calculated motion of a bubble is shown in Fig. 7

for initial bubble radii of 1, 3.16, 10, 31.6 and 100 lm,
respectively. When the radius of an initial bubble ranges

between 1 and 10 lm, the bubble begins to expand si-
multaneously with the early generation of negative

pressure. The bubble grows 40–50 times its initial size,

and the state is maintained during several 100 ls.
The relative radius will become 30 times for R0 ¼ 31:6

lm. The relative radii of expansion falls about 10 times
for R0 ¼ 100 lm. However, the period of bubble ex-

pansion is within several 100 ls. There is not very much
difference between these two cases from the viewpoint of

volume expansion. In each case the relative radius in-

creases more than 10 times, in another word the volume

expands by a factor of more than 1000.

3. Dynamics of bubbly liquid

3.1. Effect of bubble volume fraction

The wave propagation in a bubbly liquid was treated

using the equivalent sound velocity obtained from the

relation between the mixed density of gas in liquid andFig. 6. Resonance frequency vs. initial bubble radius.

Fig. 7. Bubble response for the pressure wave at the window of

a target container.
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the pressure. For the case where the interaction of

bubbles can be disregarded the volume fraction, b, is
small (b < 10�3). Foldy [8] formulated the sound ve-

locity in a bubbly liquid. The scattering theory with

consideration to the dynamic action of each bubble was

used, assuming that the bubbles were the rigid spheres.

Van Wijjngaarden [9] introduced the same formula

with the result of Foldy, by solving the Euler equation

for two-phase flows and the Rayleigh–Plesset equation

that is the dynamic equation for a single bubble. Caflisch

et al. [10] proved that the result of Wijjngaarden was

right as a result of performing theoretical deployment.

In addition, there are some techniques for deriving the

equation of motion for a bubble group from a single

bubble. Prosperetti and coworkers [11,12] used the

equation of Keller [6] that gave an expression the

equation of the motion for a single bubble. We also use

this technique. In the next paragraph, the wave motion

equation in the bubbly liquid is calculated by the tech-

nique of Prosperetti. The derived equation for the sound

velocity is shown.

The mass conservation and Euler�s equation of mo-
tion in liquid whose bubble volume fraction is b are

expressed by the Eqs. (8) and (9).

1

qLc
2
0

oP
ot

þr � u ¼ ob
ot

;

bðx; tÞ ¼ 4

3
p
Z

R3ða; x; tÞf ða; xÞda;

n ¼
Z

f ða; xÞda; ð8Þ

qL
ou
ot

þrP ¼ 0; ð9Þ

where P is the pressure, u the velocity of the bubbly

liquid, c0 the sound velocity in the normal liquid, bðtÞ
the bubble volume fraction when n bubbles with the

same size exist, bðx; tÞ the bubble volume fraction when a
distribution function, Rða; x; tÞ denotes the radius at time
t of a bubble located at position x and having an bubble
radius a, f ða; xÞ, defines the bubble probability distri-
bution in the coordinate x and bubble radius, a. When
the change of both the sound velocity and the density is

small, the linear equation of the wave motion containing

a change of the rate of bubble volume can be obtained

by Eq. (10)

1

c20

o2P
ot2

�r2P ¼ q
o2b
ot2

: ð10Þ

Using the dynamic Eqs. (4)–(6) combined with Eq. (10),

the rate of change of bubble volume and bubble radius R
are solved simultaneously. Thus, the wave motion phe-

nomenon in bubbly liquid can be solved.

In order to understand the basic characteristic of the

wave motion phenomenon in a bubbly liquid, a small

oscillating domain with weak nonlinearity is considered.

The dynamic Eqs. (4)–(6) are linearlized about the

nonlinear term of bubble radius and are substituted into

Eq. (10). Then the equation of dispersion for a standing

wave is given by Eq. (11).

k2m ¼ x2

c20
þ 4px2

Z 1

0

af ðaÞda
x2
0 � x2 � 2ibx

; ð11Þ

where km is the number of waves, b the complex atten-
uation, x the frequency of pressure oscillation in the

liquid, a the radius of bubble, f ðaÞ the distribution of
bubble radius. Furthermore, if the bubble distribution is

assumed to be homogeneous with an average radius of �aa
and n bubbles per unit volume, then Eq. (12) is given
from Eq. (11).

c20
c2m

¼ 1þ 4pc20n�aa
x2
0 � x2 � 2ibx

; ð12Þ

where cm is the relative sound velocity in bubbly liquid.
Fig. 8 shows the results of the relative sound velocity as

a function of frequency. In the analysis, the initial radius

of bubble ðR0Þ is 1 lm and the initial void fraction ðb0Þ is
10�4. The relative sound velocity is normalized by the

sound velocity without bubbles. Below the resonance

frequency of the bubble at the lower frequency regime,

the relative sound velocity becomes lower than that

without bubbles. In the higher frequency regime, the

relative sound velocity close to unity are obtained.

Fig. 9 shows the relative sound velocity in the low

frequency regime for a bubbly liquid at various initial

radii. When the bubble volume fraction becomes 10�6,

then the relative sound velocity begins to decrease. For

the case of 1 lm initial bubble radius, it decreases by half

at 10�4 bubble volume fraction. Clearly, the sound ve-

locity is affected by the existence of the bubbles. If a

critical pressure and sound velocity are measured in the

Fig. 8. Relative sound velocity in bubbly liquid.
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static and dynamic experiments, respectively, the bubble

radius and the bubble volume fraction can be estimated

using the Eqs. (3), (7) and (12). Fig. 10 shows the sound

velocity in water measured by Fox et al. [13]. The sound

velocity in bubbly water was reduced below 1500 m/s at

the lower frequency but increased more than that at the

high frequency.

3.2. Nonlinear wave equation in bubbly liquid

It is difficult to solve the dynamic equations of mo-

tion using the Eqs. (4)–(6) with Eq. (10) simultaneously.

Especially for the design work for a spallation target,

one possible way is to use commercial finite element

method (FEM) code like LS-DYNA [18] or ABAQUS

[19], for example. But it is not so practical because lots

of works must be done to modify them to simulate the

wave motion in a bubbly liquid. Eq. (4) was derived in

terms of bubble radius R. On the other hand, another

expression in bubble dynamics was given for the bubble

volume [14,15].

€vvþ dx0 _vvþ gp ¼ av2 þ bð2v€vvþ _vv2Þ; ð13Þ

where m is the bubble volume, dð¼ 4l=x0R20Þ the viscous
damping coefficient, l the kinematic viscosity,

g ¼ 4pR0=q0, a ¼ ðc þ 1Þx2
0=2V0, c the ratio of specific

heats, b ¼ 1=6V0, V0 the initial bubble volume.
The frequency of pressure in the mercury target

fluctuates around 9 kHz as shown in Figs. 2 and 7, al-

though the resonance frequency of bubbles in mercury is

estimated to be on the order over the 100 kHz. Here, we

consider the low frequency region whose dominant fre-

quency components satisfy the relation x2 � x2
0.

Therefore, the first nonlinear term in Eq. (13) dominates

the second at the low frequencies. Thus Eq. (14) was

obtained.

v ¼ � g
x2
0

p � d
x0

_vv� 1

x2
0

€vvþ a
x2
0

v2; x2 � x2
0: ð14Þ

Further approximation by v ¼ �gp=x2
0 gives Eq. (15)

v ¼ � g
x2
0

p � dg
x3
0

_pp � g
x4
0

€pp þ ag2

x6
0

p2: ð15Þ

As b in Eq. (8) is given by n� v where b is the bubble

volume fraction, n the number of bubbles, v the bubble
volume, Eq. (16) is given by merging Eq. (10) with Eq.

(15) and omitting derivative terms in the pressure fluc-

tuation higher than third order.

1

c20

�
þ q0b0

cp0

�
o2P
ot2

�r2P ¼ ðc þ 1Þq0b0
2c2p20

o2P 2

ot2
; ð16Þ

where Eq. (16) is equivalent to Eq. (17) that was given by

Westervelt [17] without the dissipation term on the

nonlinear acoustics.

1

c20

o2P
ot2

�r2P ¼ e
q0c

4
0

o2P 2

ot2
; ð17Þ

where e is a nonlinear parameter defined by the ratio of
the first order to the second order terms in Taylor series

of the equation of state (EOS) [16].

Equating the coefficients for each corresponding term

in the Eqs. (16) and (17), the nonlinear-wave equation

for a bubbly liquid is given by the Westrvelt equation

which is the governing Eq. (18) in terms of the equiva-

lent sound velocity and the nonlinear parameters.

1

�cc20
¼ 1

c20

�
þ q0b0

cp0

�
;

�ee
q0�cc

4
0

¼ ðc þ 1Þq0b0
2c2p20

; ð18Þ

where the top bar on �ee and �cc denoted the expression for
a bubbly liquid. This shows that the EOS based on

polynomials can simulate the wave propagation of the

bubbly liquid. This means that commercial FEM or fi-

0.1
10-7 10-6 10-5 10-4 10-3

R0=1mm
R0=100 µm
R0=10 µm
R0=1µm
R0=0.1µm

Fig. 9. Relative sound velocities of bubbly liquids below the

resonant frequencies for various initial bubble radii.

Fig. 10. Experimentally determined sound velocities in bubbly

water by Fox et al. [13].
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nite difference method (FDM) codes which can use

polynomial EOS (namely, nonlinear parameter e) are
valid for use in our study.

3.3. Nonlinearity of bubbly liquid

The nonlinearity of the bubbly liquid is considered by

varying the initial radius or the volume fraction of the

potential bubble in mercury and in water. Although the

surface tension is not considered in Eq. (16), the effect of

the surface tension in mercury is large, as mentioned in

the Section 2. Hence, in order to apply the surface ten-

sion to mercury, we considered it in Eq. (13). Accord-

ingly, the nonlinear parameter of bubbly liquid, which

considered the surface tension, was obtained by the

same procedure as Eq. (16) derived from Eq. (13).

Fig. 11 shows the relative nonlinear parameter, �ee=e0,
of a bubbly liquid as a function of the initial bubble

volume fraction in mercury as well as in water. It has its

maximum at a certain value of �ee=e0; that is,

ð�ee=e0Þmax ¼ 103 for the case of water, and ð�ee=e0Þmax ¼ 104

for the case of mercury without surface tension, re-

spectively. The nonlinear parameter in mercury is one

order higher than that in water. When the surface ten-

sion is considered, the nonlinearity will be greatly af-

fected in the large surface tension regime where the

bubble radius is small, for example, ð�ee=e0Þmax ¼ 105 in

the case of R0 ¼ 1 lm.

3.4. Nonlinear dynamic behavior in bubbly liquid

In order to know the effect of nonlinear parameters,

the propagating process of waves was analyzed by Eq.

(17) assuming a Gaussian distribution in the initial

pressure distribution, P0, in mercury. Fig. 12 shows the
relative pressure normalized by the initial maximum

pressure as a function of propagating distance, for the

case without bubbles in mercury, �ee=e0 ¼ 1:e0 ¼ 4:9 [16].
If the Gaussian distribution is disturbed by a steep wave

front, then it will become the evidence of shock wave

generation. Up to 100 MPa the steep wave front does

not appear but over 1 GPa a shock wave was estab-

lished. If �ee=e0 ¼ 25, a steep wave front appeared even at

100 MPa. A shock wave develops entirely when �ee=e0 is
greater than 50.

Fig. 13 shows the relationship between the initial

pressure defined by the appearance of a shock wave and

the initial bubble volume fraction, b0. In a bubbly liquid
with 1 MPa initial pressure, a shock wave will appear

when the bubble volume fraction is larger than 10�7.

Fig. 14 shows the generation of a shock wave for the

case of pulsed spallation in the mercury target with and
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Fig. 11. Relative sound velocity vs. initial bubble volume

fraction for the case of water and mercury with and without

surface tension.

Fig. 12. Distortion of a pressure distribution accordingly to

initial pressure amplitude using nonlinear second order EOS of

mercury (e0 ¼ 4:9); initial pressure distribution was Gaussian

distribution.
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Fig. 13. Relationship between initial pressure and bubble vol-

ume fraction when distortion of initial pressure distribution

occurs in mercury.
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without bubbles; the pressure is about 50 MPa in mer-

cury. The result shows the potential generation of shock

wave even for an initial bubble volume fraction is as small

as 10�9.

Next, the initial pressure in the mercury target is dis-

cussed. The calculation model is a mercury cylinder 10 cm

in diameter and 30 cm in length. Two cases are analyzed;

one is a cylinder consisting of only mercury and the other

one is a mercury cylinder enclosed in a steel vessel. The

vessel has a 5 mm thickness at the cylinder part, 2 mm

thickness at the top flat disc, and 5 mm thickness at the

bottom flat disc. We used AUTODYN [20] code for an-

alyzing the pressure wave in mercury, which can solve the

interaction problem between solid and fluid. Different

schemes are used, that is, FEM in solid and finite volume

method (FVM) in fluid. The vessel is formulized in the

Lagrange scheme and mercury in the Eulerian scheme in

common variables of velocity and pressure normal di-

rection to the boundary of both materials.

Initial pressure is given by a function of the Gaussian

distribution in the radial direction and an exponential

distribution in the depth direction. The maximum pres-

sure is 50 MPa near the top disc. The equation of state in

mercury is given by the second order polynomial. The

initial bubble volume fraction is 10�7, the relative non-

linear parameter, �ee=e0 is 103 and 104. The second order
polynomial was only taken into consideration in the

positive pressure regime. In the negative pressure regime

linearity was kept.

Fig. 15 shows pressure as a function of time near the

top disc for the case study of a mercury cylinder without

the vessel. Pressure change in mercury occurs earlier with

increasing nonlinear parameter. But negative pressure in

the nonlinear case is smaller than the linear EOS.

Fig. 16 shows the pressure as a function of time in

mercury near the top disc for the interactive cases of a

mercury cylinder with the vessel. After 70 ls the pressure

Fig. 14. Generation of a shock wave in the mercury target with

and without bubbles; initial pressure distribution was Gaussian

distribution with a same amplitude.
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Fig. 15. Pressure as a function of time near the top disk with

the rigid vessel: 300 mm length� 100 mm diameter.

Fig. 16. Pressure as a function of time near the top disk with

the elastic vessel.

Fig. 17. Induced stress as a function of time at the center of top

disk with the elastic vessel.
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fluctuates more quickly and the amplitude decreased

compared with those for the linear EOS. Fig. 17 shows

the stress as a function of time at the center of the top

disc for the interactive case of a mercury cylinder with

the vessel. Induced stress decreases with increasing

nonlinearity.

4. Conclusions

The thermal shock stress in the mercury target vessel

was analyzed, the target receives the incident proton

beam at the energy of 1 MW with the pulse duration of 1

ls. A maximum negative pressure of 61 MPa was gen-

erated following the dispersion of the compression field

at 52 MPa generated in mercury. It is expected that,

cavitation may be caused by the negative pressure. To

understand the cavitation behavior, a simulation study

was carried out using the equation of motion based on

the bubble dynamics for a single bubble, and a bubbly

liquid, and fundamental parameter analyses were carried

out. It is found that a bubble has a potential expansion

of more than 1000 times in the pressure near the window

of the target vessel. Consequently wave propagation will

be affected and the interaction between the vessel surface

and bubble expansion must be considered.

Theoretical consideration was given to the wave

motion of propagation in a bubbly liquid. The equation

of state in a bubbly liquid can be approximated by a

polynomial expression. This result makes general-pur-

pose shock-analyses codes available for simulation.

Analyses showed clearly that the propagation of the

pressure wave would be influenced by the existence of

bubbles.

In a mercury target, the inherent diameter of a

bubble and the bubble volume fraction can be estimated

if the critical pressure, the sound velocity, and resonance

frequency are measured by static and dynamic experi-

ments.
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